Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.442
Filtrar
1.
Clin Ophthalmol ; 18: 1067-1082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659425

RESUMO

Purpose: To assess long term changes of the surgically induced astigmatism (SIA) and corneal higher-order aberrations (HOAs) after 2.2 mm clear corneal incisions (CCIs) in femtosecond laser-assisted cataract surgery and compare them between 2 types of CCIs: temporal and superior approach. Patients and Methods: Patients received the temporal CCIs (Group A) or the superior CCIs (Group B). Outcome measures included visual acuity, manifest refraction, corneal astigmatism, SIA, flattening effect, and corneal HOAs. Correlation between postoperative corneal HOA and SIA at each follow-up were analysed. Results: This study assessed data from 106 eyes, of which 64 in Group A and 42 in Group B. The two groups had similar postoperative visual acuity of distance, intermediate and near (all P > 0.05). SIA and corneal HOAs were significantly lower in Group A than Group B in the early postoperative period, while there was no significant difference in the late postoperative period. At 6 months after surgery, the arithmetic mean of SIA over corneal 4mm zone was 0.33 ± 0.19D for temporal incision, and 0.37 ± 0.25D for superior incision. For Group A, the correlations of HOAs and SIA persisted from 1 week to 6 months after surgery. For Group B, the changes in corneal HOAs were significantly related to the SIA at 1 week and 1 month postoperatively. Conclusion: This study suggested the consistency of increasing and recovering process of corneal HOAs and SIA after surgery. Compared to the superior incisions, temporal incisions might induce quicker corneal recovery and less change in SIA and corneal HOAs.

2.
World J Clin Cases ; 12(10): 1733-1741, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38660074

RESUMO

BACKGROUND: Diabetic patients with cataracts encounter specific difficulties during cataract surgery due to alterations in microcirculation, blood supply, metabolism, and the microenvironment. Traditional phacoemulsification may not fully tackle these issues, especially in instances with substantial preoperative astigmatism. The utilization of femtosecond laser-assisted phacoemulsification, in conjunction with Toric intraocular lens (IOL) implantation, offers a potentially more efficient strategy. This research seeks to evaluate the efficacy and possible complications of this approach in diabetic cataract patients. AIM: To investigate the clinical efficacy and complications of femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation in diabetic cataract patients, comparing it with traditional phacoemulsification methods. METHODS: This retrospective study enrolled 120 patients with diabetes cataract from May 2019 to May 2021. The patients were divided into two groups: the control group underwent traditional phacoemulsification and Toric IOL implantation, while the treatment group received Len Sx femtosecond laser-assisted treatment. Outcome measures included naked eye vision, astigmatism, high-level ocular phase difference detection, clinical efficacy, and complication. RESULTS: There were no significant preoperative differences in astigmatism or naked eyesight between the two groups. However, postoperative improvements were observed in both groups, with the treatment group showing greater enhancements in naked eye vision and astigmatism six months after the procedure. High-level corneal phase difference tests also indicated significant differences in favor of the treatment group. CONCLUSION: This study suggests that femtosecond laser-assisted phacoemulsification combined with Toric IOL implantation appears to be more effective in enhancing postoperative vision in diabetic cataract patients compared to traditional methods offering valuable insights for clinical practice.

3.
Nano Lett ; 24(15): 4595-4601, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574276

RESUMO

The concepts of topology provide a powerful tool to tailor the propagation and localization of the waves. While electrons have only two available spin states, engineered degeneracies of photonic modes provide novel opportunities resembling spin degrees of freedom in condensed matter. Here, we tailor such degeneracies for the array of femtosecond laser written waveguides in the optical range exploiting the idea of photonic molecules: clusters of strongly coupled waveguides. In our experiments, we observe unconventional topological modes protected by the Z3 invariant arising due to the interplay of interorbital coupling and geometric dimerization mechanism. We track multiple topological transitions in the system with the change in the lattice spacings and excitation wavelength. This strategy opens an avenue for designing novel types of photonic topological phases and states.

4.
Nano Lett ; 24(15): 4485-4492, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578031

RESUMO

Confining DNA in nanochannels is an important approach to studying its structure and transportation dynamics. Graphene nanochannels are particularly attractive for studying DNA confinement due to their atomic flatness, precise height control, and excellent mechanical strength. Here, using femtosecond laser etching and wetting transfer, we fabricate graphene nanochannels down to less than 4.3 nm in height, with the length-to-height ratios up to 103. These channels exhibit high stability, low noise, and self-cleaning ability during the long-term ionic current recording. We report a clear linear relationship between DNA length and the residence time in the channel and further utilize this relationship to differentiate DNA fragments based on their lengths, ranging widely from 200 bps to 48.5 kbps. The graphene nanochannel presented here provides a potential platform for label-free analyses and reveals fundamental insights into the conformational dynamics of DNA and proteins in confined space.


Assuntos
Grafite , Eletricidade , Condutividade Elétrica , Proteínas , DNA/química
5.
Appl Spectrosc ; : 37028241240782, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567880

RESUMO

In this work, we present studies on the effect of laser wavelengths on the laser-induced plasma characterization using a femtosecond (fs) ytterbium-doped potassium-gadolinium tungstate (Yb:KGW) laser. Plasma plumes of copper, steel, ceramics, and glass samples were induced using a multiple shot of 200 fs laser pulses with 1030 nm and 343 nm wavelengths at fixed laser fluence (10.5J/cm2) and analyzed using the laser-induced breakdown spectroscopy (LIBS) technique. Time-resolved fs-LIBS measurements were performed on the same set of samples and under the same experimental conditions. For the calculation of plasma parameters, the set of spectral lines of Cu(I) (for copper sample), Fe(I) (for steel sample), and Ca(I), K(I) (for glass and ceramics samples) were observed. The plasma electron temperature and density were evaluated from the Boltzmann plots and Stark-broadening profiles of the plasma spectral lines, assuming the local thermodynamic equilibrium condition. Time-resolved plasma temperature and electron density for fs-LIBS using ultraviolet (UV) and infrared (IR) laser wavelengths were analyzed and no significant dependence on fs laser wavelength was observed for any of the samples. However, for all samples the signal-to-noise ratio (SNR) significantly increased using UV laser radiation: copper (∼100%), steel (∼300%), glass (∼400%), and ceramics (∼40%). Therefore, by using a fs UV laser wavelength for laser-induced breakdown spectroscopy experiments, for certain materials the SNR and at the same time the limit of detection can be significantly enhanced.

6.
BMC Ophthalmol ; 24(1): 189, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658894

RESUMO

PURPOSE: To evaluate short-term visual and refractive outcomes after implantation of a diffractive trifocal intraocular lens (IOL) in cataract patients with phacoemulsification (PHACO) and femtosecond laser assisted cataract surgery (FLACS). SETTING: Department of Ophthalmology, Shanghai Aier Eye Hospital, China. DESIGN: A retrospective, observational study. METHODS: Patients who underwent cataract surgery combined with Acrysoft IQ PanOptix trifocal IOL implantation were enrolled and divided into three groups: PHACO group, LAstig-FLACS group (astigmatism less then 1D) and HAstig-FLACS group (astigmatism more than 1D). Logarithm of the minimum angle of resolution (logMAR) visual acuity of uncorrected distance (UDVA), intermediate (UIVA), near visual (UNVA), defocus curve, surgically induced astigmatism (SIA) were evaluated in 1 months postoperatively and wavefront aberrations were evaluated in 6 months. RESULTS: 101 eyes of 60 patients were included with 31 eyes in PHACO group, 45 eyes in LAstig-FLACS group and 25 eyes in HAstig-FLACS group. Significant difference was found of internal Strehl Ratio (SR) between PHACO and LAstig-FLACS group (P = 0.026). In PHACO group, 79.31%, 86.21%, 72.41% of eyes gain visual acuity LogMAR 0.1 or more in UDVA, UIVA and UNVA, while 83.72%, 93.02%, 93.02% of those in LAstig-FLACS group and 92.00%, 84.00%, 76.00% in HAstig-FLACS group. CONCLUSIONS: Panoptix diffractive trifocal IOL provides satisfied visual outcome in no matter FLACS or PHACO. Besides, trifocal IOL implantation via FLACS can provide a better accumulative visual acuity outcome at all distance than PHACO in 1 month. Femtosecond laser assisted limbal relaxing incisions (FLLRIs) is an excellent way to reduce a patient's corneal astigmatism.


Assuntos
Terapia a Laser , Lentes Intraoculares Multifocais , Facoemulsificação , Refração Ocular , Acuidade Visual , Humanos , Estudos Retrospectivos , Masculino , Feminino , Facoemulsificação/métodos , Acuidade Visual/fisiologia , Pessoa de Meia-Idade , Terapia a Laser/métodos , Idoso , Refração Ocular/fisiologia , Implante de Lente Intraocular/métodos , Pseudofacia/fisiopatologia , Resultado do Tratamento , Desenho de Prótese , Extração de Catarata/métodos , Seguimentos
7.
J Microsc Ultrastruct ; 12(1): 35-42, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633569

RESUMO

Background: Keratoconus (KC) is degenerative corneal disorder, with central and paracentral thinning and corneal ectasia. For KC progressive cases, primary treatment included corneal collagen cross linking (CXL) to stabilize coning and intracorneal rings segment (ICRS) to correct visual acuity. Aim: The aim of the study is to assess efficacy and safety of ICRS and CXL on one session (Simultaneous) or two sessions (sequential) with maximum of 1 month apart. Patients and Methods: This Prospective Intervention Comparative research made at Armed forces hospital, Cairo, Egypt from January 2017 to December 2019. Forty patients (60 eyes) with mild to moderate KC were enrolled. Patients sorted into Simultaneous group includes 21 patients (30 eyes) undergo two procedures (ICRS then CXL) at the same session and Sequential group included 19 patients (30 eyes) undergo ICRS then CXL on two sessions with month apart. Patients followed up at end of 1st, 3rd, and 6th months. Assessment included changes in corrected corneal surface irregularities as minimum keratometric 1 (K1), maximum keratometric readings (K2), and mean keratometric (Km) readings. Results: Improvement of K1, K2, and Km in Simulations and Sequential groups achieved at end of 1st-, 3rd-, and 6th-month postoperative versus preoperative. Maximum improvement in Simulations and Sequential groups in K1 achieved at end of 6th and 1st months, in K2 at end of 3rd and 6th months and in Km at end of 1st and 3rd months. Conclusions: Combined ICRS and CXL act safely in one or two sessions and there are no statistically significant variations between results on both methods in keratometric readings.

8.
Lasers Surg Med ; 56(4): 371-381, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563442

RESUMO

OBJECTIVES: To develop and practically test high-precision femtosecond laser ablation models for dental hard tissue that are useful for detailed planning of automated laser dental restorative treatment. METHODS: Analytical models are proposed, derived, and demonstrated for practical calculation of ablation rates, ablation efficiency and ablated morphology of human dental enamel and dentin using femtosecond lasers. The models assume an effective optical attenuation coefficient for the irradiated material. To achieve ablation, it is necessary for the local energy density of the attenuated pulse in the hard tissue to surpass a predefined threshold that signifies the minimum energy density required for material ionization. A 1029 nm, 40 W carbide 275 fs laser was used to ablate sliced adult human teeth and generate the data necessary for testing the models. The volume of material removed, and the shape of the ablated channel were measured using optical profilometry. RESULTS: The models fit with the measured ablation efficiency curve against laser fluence for both enamel and dentin, correctly capturing the fluence for optimum ablation and the volume of ablated material per pulse. The detailed shapes of a 400-micrometer wide channel and a single-pulse width channel are accurately predicted using the superposition of the analytical result for a single pulse. CONCLUSIONS: The findings have value for planning automated dental restorative treatment using femtosecond lasers. The measurements and analysis give estimates of the optical properties of enamel and dentin irradiated with an infrared femtosecond laser at above-threshold fluence and the proposed models give insight into the physics of femtosecond laser processing of dental hard tissue.


Assuntos
Terapia a Laser , Dente , Humanos , Dentina/cirurgia , Lasers , Luz
9.
Lasers Surg Med ; 56(4): 382-391, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570914

RESUMO

BACKGROUND AND OBJECTIVES: Femtosecond laser trabeculotomy (FLT) creates aqueous humor outflow channels through the trabecular meshwork (TM) and is an emerging noninvasive treatment for open-angle glaucoma. The purpose of this study is to investigate the effect of pulse energy on outflow channel creation during FLT. MATERIALS AND METHODS: An FLT laser (ViaLase Inc.) was used to create outflow channels through the TM (500 µm wide by 200 µm high) in human cadaver eyes using pulse energies of 10, 15, and 20 µJ. Following treatment, tissues were fixed in 4% paraformaldehyde. The channels were imaged using optical coherence tomography (OCT) and assessed as full thickness, partial thickness, or not observable. RESULTS: Pulse energies of 15 and 20 µJ had a 100% success rate in creating full-thickness FLT channels as imaged by OCT. A pulse energy of 10 µJ resulted in no channels (n = 6), a partial-thickness channel (n = 2), and a full-thickness FLT channel (n = 2). There was a statistically significant difference in cutting widths between the 10 and 15 µJ groups (p < 0.0001), as well as between the 10 and 20 µJ groups (p < 0.0001). However, there was no statistically significant difference between the 15 and 20 µJ groups (p = 0.416). CONCLUSIONS: Fifteen microjoules is an adequate pulse energy to reliably create aqueous humor outflow channels during FLT in human cadaver eyes. OCT is a valuable tool when evaluating FLT.


Assuntos
Glaucoma de Ângulo Aberto , Trabeculectomia , Humanos , Trabeculectomia/métodos , Glaucoma de Ângulo Aberto/cirurgia , Pressão Intraocular , Lasers , Cadáver
10.
Materials (Basel) ; 17(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38591371

RESUMO

By virtue of its narrow pulse width and high peak power, the femtosecond pulsed laser can achieve high-precision material modification, material additive or subtractive, and other forms of processing. With additional good material adaptability and process compatibility, femtosecond laser-induced application has achieved significant progress in flexible electronics in recent years. These advancements in the femtosecond laser fabrication of flexible electronic devices are comprehensively summarized here. This review first briefly introduces the physical mechanism and characteristics of the femtosecond laser fabrication of various electronic microdevices. It then focuses on effective methods of improving processing efficiency, resolution, and size. It further highlights the typical progress of applications, including flexible energy storage devices, nanogenerators, flexible sensors, and detectors, etc. Finally, it discusses the development tendency of ultrashort pulse laser processing. This review should facilitate the precision manufacturing of flexible electronics using a femtosecond laser.

11.
Acta Ophthalmol ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38440865

RESUMO

PURPOSE: To evaluate change in retinal layers 18 months after femtosecond laser-assisted cataract surgery (LCS) and manual cataract surgery (MCS) in a representative age-related cataract population using artificial intelligence (AI)-based automated retinal layer segmentation. METHODS: This was a prospective, randomized and intraindividual-controlled study including 60 patients at the Medical University of Vienna, Austria. Bilateral same-day LCS and MCS were performed in a randomized sequence. To provide insight into the development of cystoid macular oedema (CME), retinal layer thickness was measured pre-operatively and up to 18 months post-operatively in the central 1 mm, 3 mm and 6 mm. RESULTS: Fifty-six patients completed all follow-up visits. LCS compared to MCS did not impact any of the investigated retinal layers at any follow-up visit (p > 0.05). For the central 1 mm, a significant increase in total retinal thickness (TRT) was seen after 1 week followed by an elevated plateau thereafter. For the 3 mm and 6 mm, TRT increased only after 3 weeks and 6 weeks and decreased again until 18 months. TRT remained significantly increased compared to pre-operative thickness (p < 0.001). Visual acuity remained unaffected by the macular thickening and no case of CME was observed. Inner nuclear layer (INL) and outer nuclear layer (ONL) were the main causative layers for the total TRT increase. Photoreceptors (PR) declined 1 week after surgery but regained pre-operative values 18 months after surgery. CONCLUSION: Low-energy femtosecond laser pre-treatment did not influence thickness of the retinal layers in any topographic zone compared to manual high fluidic phacoemulsification. TRT did not return to pre-operative values 18 months after surgery. The causative layers for subclinical development of CME were successfully identified.

12.
Nano Lett ; 24(10): 3176-3185, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38436575

RESUMO

Inspired by the reverse thrust generated by fuel injection, micromachines that are self-propelled by bubble ejection are developed, such as microrods, microtubes, and microspheres. However, controlling bubble ejection sites to build micromachines with programmable actuation and further enabling mechanical transmission remain challenging. Here, bubble-propelled mechanical microsystems are constructed by proposing a multimaterial femtosecond laser processing method, consisting of direct laser writing and selective laser metal reduction. The polymer frame of the microsystems is first printed, followed by the deposition of catalytic platinum into the desired local site of the microsystems by laser reduction. With this method, a variety of designable microrotors with selective bubble ejection sites are realized, which enable excellent mechanical transmission systems composed of single and multiple mechanical components, including a coupler, a crank slider, and a crank rocker system. We believe the presented bubble-propelled mechanical microsystems could be extended to applications in microrobotics, microfluidics, and microsensors.

13.
Nano Lett ; 24(10): 3133-3141, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477056

RESUMO

Liquid manipulation is essential for daily life and modern industry, and it is widely used in various fields, including seawater desalination, microfluidic robots, and biomedical engineering. Nevertheless, the current research focuses on the manipulation of individual droplets. There are a few projects for water film management. Here, we proposed a facile method of wind-triggered water film self-sculpturing based on a heterogeneous wettability surface, which is achieved by the femtosecond laser direct writing technology and femtosecond laser deposition. Under the conditions of various airflow velocities and water film thicknesses, three distinct behaviors of the water film were analyzed. As a result, when the water film thickness is lower than 4.9 mm, the self-sculpture process will occur until the whole superhydrophobic surface dewetting. Four potential applications are demonstrated, including encryption, oil containers, reconfigurable patterning, and self-splitting devices. This work provides a new approach for manipulating a water film of fluid control engineering.

14.
Vestn Oftalmol ; 140(1): 65-70, 2024.
Artigo em Russo | MEDLINE | ID: mdl-38450468

RESUMO

Prevention and treatment of anterior capsular contraction syndrome (ACCS) is a relevant problem in cataract surgery. PURPOSE: The study was performed to develop a femtosecond laser-assisted technique for anterior capsulotomy in anterior capsular contraction syndrome and assess its preliminary results in preventing the progression of pathological changes in the capsular bag. MATERIAL AND METHODS: The examination and femtosecond laser-assisted treatment without additional surgical intervention was performed in 6 patients (6 eyes) aged 69 to 73 years with anterior capsular contraction syndrome. Femtosecond laser-assisted anterior capsulotomy was performed using the VICTUS system (Technolas Perfect Vision, Germany). Capsulotomy diameter was 4.0-4.5 mm, laser radiation energy - 9000 nJ, laser exposure depth 900-1000 µm. RESULTS: The diameter of the anterior capsulotomy before treatment was 2.85 mm [2.75; 2.93]. After 1 month, the diameter of the anterior capsular opening was 2.88 mm [2.78; 2.96] (p>0.05). One year after femtosecond laser intervention, the anterior capsulotomy opening was almost the same shape and diameter - 2.84 mm [2.74; 2.94] (p>0.05). CONCLUSION: Femtosecond laser-assisted circular capsulotomy is an effective and safe method for preventing the progression of anterior capsular contraction syndrome in the absence of severe IOL decentration and for maintaining the diameter of the anterior capsular opening of at least 2.5-3.0 mm.


Assuntos
Extração de Catarata , Oftalmologia , Exposição à Radiação , Humanos , Olho , Lasers
15.
Nanomaterials (Basel) ; 14(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535702

RESUMO

High-entropy alloys (HEAs) are a class of metal alloys consisting of four or more molar equal or near-equal elements. HEA nanomaterials have garnered significant interest due to their wide range of applications, such as electrocatalysis, welding, and brazing. Their unique multi-principle high-entropy effect allows for the tailoring of the alloy composition to facilitate specific electrochemical reactions. This study focuses on the synthesis of high-purity HEA nanoparticles using the method of femtosecond laser ablation synthesis in liquid. The use of ultrashort energy pulses in femtosecond lasers enables uniform ablation of materials at significantly lower power levels compared to longer pulse or continuous pulse lasers. We investigate how various femtosecond laser parameters affect the morphology, phase, and other characteristics of the synthesized nanoparticles. An innovative aspect of our solution is its ability to rapidly generate multi-component nanoparticles with a high fidelity as the input multi-component target material at a significant yielding rate. Our research thus focuses on a novel synthesis of high-entropy alloying CuCoMn1.75NiFe0.25 nanoparticles. We explore the characterization and unique properties of the nanoparticles and consider their electrocatalytic applications, including high power density aluminum air batteries, as well as their efficacy in the oxygen reduction reaction (ORR). Additionally, we report a unique nanowire fabrication phenomenon achieved through nanojoining. The findings from this study shed light on the potential of femtosecond laser ablation synthesis in liquid (FLASiL) as a promising technique for producing high-purity HEA nanoparticles.

16.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540738

RESUMO

PURPOSE: This study was conducted to evaluate the effects of different capsulotomy and fragmentation energy levels on the production of oxidative free radicals following femtosecond laser-assisted cataract surgery (FLACS) with a low-energy platform. METHODS: The experimental study included 60 porcine eyes (12 groups). In each group, capsulotomies with 90% or 150% energy, and fragmentations with 90%, 100%, or 150% energy or 150% with high spot density, respectively, were performed. Control samples were obtained from non-lasered eyes at the beginning (five eyes) and end (five eyes) of the experiment. In the clinical study, 104 eyes were divided into 5 groups, and they received conventional phacoemulsification (20 eyes), FLACS with 90% capsulotomy and 100% fragmentation energy levels without NSAIDs (16 eyes), FLACS with 90% (26 eyes) or 150% (22 eyes) capsulotomy energy levels, respectively, with a 100% fragmentation energy level and NSAIDs, and FLACS with 90% capsulotomy and 150% fragmentation energy levels and NSAIDs (20 eyes). Aqueous samples were analyzed for their malondialdehyde (MDA) and superoxide dismutase (SOD) levels. RESULTS: In the experimental study, there were no significant differences in the MDA and SOD levels between the groups with different capsulotomy energy levels. An increase in the fragmentation energy from 100% to 150% led to significantly higher MDA levels in the groups with both 90% (p = 0.04) and 150% capsulotomy energy levels (p = 0.03), respectively. However, increased laser spot densities did not result in significant changes in MDA or SOD levels. In the clinical study, all four of the FLACS groups showed higher MDA levels than the conventional group. Similarly, the increase in the fragmentation energy from 100% to 150% resulted in significantly elevated levels of MDA and SOD, respectively. CONCLUSIONS: Although increasing the FSL capsulotomy energy level may not have increased free radicals, higher fragmentation energy levels increased the generation of aqueous free radicals. However, fragmentation with high spot density did not generate additional oxidative stress. Increased spot density did not generate additional oxidative stress, and this can be helpful for dense cataracts.


Assuntos
Catarata , Terapia a Laser , Humanos , Terapia a Laser/métodos , Catarata/terapia , Lasers , Estresse Oxidativo , Radicais Livres , Anti-Inflamatórios não Esteroides , Superóxido Dismutase
17.
Micromachines (Basel) ; 15(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542641

RESUMO

Machining special microstructures on the surface of silicon nitride ceramics helps improve their service performance. However, the high brittleness and low fracture toughness of silicon nitride ceramics make it extremely difficult to machine microstructures on their surface. In this study, a femtosecond laser is used to machine parallel grooved microstructures on the surface of silicon nitride ceramics. The effects of the laser polarization angle, laser single pulse energy, scanning line spacing, and laser scan numbers on the surface morphology and geometric characteristics of grooved microstructures are researched. It is found that a greater angle between the direction of the scanning path and laser polarization is helpful to obtain a smoother surface. As the single pulse energy increases, debris and irregular surface structures will emerge. Increasing the laser scan line spacing leads to clearer and more defined parallel grooved microstructures. The groove depth increases with the increase in the scan numbers. However, when a certain number of scans is reached, the depth will not increase further. This study serves as a valuable research foundation for the femtosecond laser processing of silicon nitride ceramic materials.

18.
Bioengineering (Basel) ; 11(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38534529

RESUMO

The bioengineering of corneal endothelial grafts consists of seeding in vitro cultured corneal endothelial cells onto a thin, transparent, biocompatible, and sufficiently robust carrier which can withstand surgical manipulations. This is one of the most realistic alternatives to donor corneas, which are in chronic global shortage. The anterior capsule of the crystalline lens has already been identified as one of the best possible carriers, but its challenging manual preparation has limited its use. In this study, we describe a femtosecond laser cutting process of the anterior capsule of whole lenses in order to obtain capsule discs of 8 mm diameter, similar to conventional endothelial grafts. Circular marks made on the periphery of the disc indicate its orientation. Immersion in water for 3 days is sufficient to completely remove the lens epithelial cells and to enable the seeding of corneal endothelial cells, which remain viable after 27 days of culture. Therefore, this method provides a transparent, decellularized disc ready to form viable tissue engineered endothelial grafts.

19.
ACS Appl Bio Mater ; 7(4): 2594-2603, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38523342

RESUMO

Repairing articular cartilage damage is challenging due to its low regenerative capacity. In vitro, cartilage regeneration is a potential strategy for the functional reconstruction of cartilage defects. A hydrogel is an advanced material for mimicking the extracellular matrix (ECM) due to its hydrophilicity and biocompatibility, which is known as an ideal scaffold for cartilage regeneration. However, chondrocyte culture in vitro tends to dedifferentiate, leading to fibrosis and reduced mechanical properties of the newly formed cartilage tissue. Therefore, it is necessary to understand the mechanism of modulating the chondrocytes' morphology. In this study, we synthesize photo-cross-linkable bovine serum albumin-glycidyl methacrylate (BSA-GMA) with 65% methacrylation. The scaffolds are found to be suitable for chondrocyte growth, which are fabricated by homemade femtosecond laser maskless optical projection lithography (FL-MOPL). The large-area chondrocyte scaffolds have holes with interior angles of triangle (T), quadrilateral (Q), pentagon (P), hexagonal (H), and round (R). The FL-MOPL polymerization mechanism, swelling, degradation, and biocompatibility of the BSA-GMA hydrogel have been investigated. Furthermore, cytoskeleton and nucleus staining reveals that the R-scaffold with larger interior angle is more effective in maintaining chondrocyte morphology and preventing dedifferentiation. The scaffold's ability to maintain the chondrocytes' morphology improves as its shape matches that of the chondrocytes. These results suggest that the BSA-GMA scaffold is a suitable candidate for preventing chondrocyte differentiation and supporting cartilage tissue repair and regeneration. The proposed method for chondrocyte in vitro culture by developing biocompatible materials and flexible fabrication techniques would broaden the potential application of chondrocyte transplants as a viable treatment for cartilage-related diseases.


Assuntos
Cartilagem Articular , Condrócitos , Compostos de Epóxi , Metacrilatos , Condrócitos/metabolismo , Soroalbumina Bovina/farmacologia , Soroalbumina Bovina/metabolismo , Tecidos Suporte , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Cartilagem Articular/metabolismo
20.
ACS Appl Mater Interfaces ; 16(14): 18154-18163, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38547460

RESUMO

A strategy to manipulate droplets on the lubricated slippery surfaces using tribostatic electricity is proposed. By employing femtosecond laser-induced porous microstructures, we prepared a slippery surface with ultralow adhesion to various liquids. Electrostatic induction causes the charges within the droplet to be redistributed; thus, the droplet on the as-prepared slippery surfaces can be guided by electrostatic force under the electrostatic field, with controllable sliding direction and unlimited transport distance. The combination of electrostatic interaction and slippery surfaces allows us to manipulate droplets with a wide volume range (from 100 nL to 0.5 mL), charged droplets (including electrostatic attraction and repulsion), corrosive droplets, and even organic droplets with ultralow surface tension. In addition, droplets on tilted surfaces, curved surfaces, and inverted slippery surfaces can also be manipulated. Especially, the slippery surfaces can even allow the electrostatic interaction to manipulate alcohol with surface tension as low as 22.3 mN/m and liquid droplets suspended on a downward surface, which is not possible with reported superhydrophobic substrates. The features of slippery surfaces make the electrostatic manipulation successfully applied in versatile droplet manipulation, droplet patterning, chemical microreaction, transport of solid cargo, targeted delivery of chemicals, and liquid sorting.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...